Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 268: 106865, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377931

RESUMO

Freshwater acidification is a global environmental challenge, yet the effects of acidic water on fish resistance to toxic Ag+ remain an unexplored area. To address this knowledge gap, zebrafish embryos were exposed to different concentrations (0 (control), 0.1, and 0.25 mg/L) of AgNO3 under pH 5 or 7 for 7 days. Notably, AgNO3 at 0.25 mg/L resulted in 100 % mortality in both pH conditions, while AgNO3 at 0.1 mg/L resulted in higher mortality at pH 5 (85 %) compared to pH 7 (20 %), indicating that acidic water enhanced Ag+ toxicity. Several parameters, including body length, inner ear (otic vesicle and otolith) and yolk sac areas, lateral line hair cell number and morphology, the number of ionocytes (H+-ATP-rich cells and Na+/K+-ATP-rich cells), and ion contents (Ag+, Na+, and Ca2+) were assessed at 96 h (day 4) to investigate individual and combined effects of Ag+ and acid on embryos. Acid alone did not significantly alter most parameters, but it decreased the yolk sac area and increased the ionocyte number. Conversely, Ag+ alone caused reductions in most parameters, including body length, the inner ear area, hair cell number, and ionocyte number. Combining acid and Ag+ resulted in greater suppression of the otolith area, hair cell number, and Na+/Ca2+ contents. In conclusion, acidification of freshwater poses a potential risk to fish embryo viability by increasing their susceptibility to silver toxicity, specifically affecting sensory function and ion regulation.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Prata/toxicidade , Água/farmacologia , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Ácidos/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38220071

RESUMO

The toxicity of copper nanoparticles (CuNPs) to aquatic animals, particularly their effects on the cardiovascular system, has not been thoroughly investigated. In the present study, zebrafish embryos were used as a model to address this issue. After exposure to different concentrations (0.01, 0.1, 1, and 3 mg/L) of CuNPs for 96 h (4 to 100 h post-fertilization), cardiac parameters of the heart rate (HR), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and cardiac output (CO), and vascular parameters of the aortic blood flow velocity (ABFV) and aortic diameter (AD) were examined by a video-microscopic method. Morphologically, CuNPs induced concentration-dependent pericardial edema. Although CuNPs did not alter the HR, they significantly reduced the EDV, SV, and CO at ≥0.1 mg/L, the ESV and EF at 3 mg/L, the ABFV at ≥0.1 mg/L, and the AD at ≥1 mg/L. Transcript levels of several cardiac genes, nppa, nppb, vmhc, and gata4, were also examined. CuNPs significantly suppressed nppa and nppb at ≥0.1 mg/L, gata4 at ≥0.01 mg/L, and vmhc at 1 mg/L. This study demonstrated that CuNPs can induce cardiovascular toxicity at environmentally relevant concentrations during fish embryonic development and highlight the potential ecotoxicity of CuNPs to aquatic animals.


Assuntos
Sistema Cardiovascular , Nanopartículas , Nitrobenzoatos , Procainamida/análogos & derivados , Animais , Peixe-Zebra , Cobre/toxicidade , Nanopartículas/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-38013044

RESUMO

Ammonia is an environmental pollutant that is toxic to all aquatic animals. However, the mechanism of ammonia toxicity toward the ion regulatory function of early-stage fish has not been fully documented. We addressed this issue using zebrafish embryos as a model. We hypothesized that ammonia might impair ion regulation by inducing oxidative stress, mitochondrial dysfunction, and cell death of epidermal ionocytes and keratinocytes in zebrafish embryos. After exposure to various concentrations (10- 30 mM) of NH4Cl for 96 h, mortality increased up to 50 % and 100 % at 25 and 30 mM, respectively. Whole-embryo sodium, potassium, and calcium contents decreased at ≥10 mM, suggesting dysfunction of ion regulation. Numbers of H+-ATPase-rich (HR) cells and Na+/K+-ATPase-rich (NaR) cells (two ionocyte subtypes) were not significantly altered at 15 or 20 mM, while the mitochondrial abundance significantly decreased and reactive oxygen species (ROS) levels significantly increased in ionocytes. Moreover, caspase-3-dependent apoptosis was found in epidermal keratinocytes. Whole-embryo transcript levels of several genes involved in ion regulation, antioxidation, and apoptosis were upregulated after ammonia exposure. In conclusion, ammonia exposure was shown to induce oxidative stress and mitochondrial dysfunction in ionocytes and apoptosis in keratinocytes, thereby impairing ion regulation and ultimately leading to the death of zebrafish embryos.


Assuntos
Doenças Mitocondriais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Doenças Mitocondriais/metabolismo , Embrião não Mamífero/metabolismo
4.
Aquat Toxicol ; 265: 106756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952273

RESUMO

Fenpropathrin is one of the widely used pyrethroid pesticides in agriculture and is frequently detected in the environment, groundwater, and food. While fenpropathrin was found to have neurotoxic effects in mammals, it remains unclear whether it has similar effects on fish. Here, we used adult zebrafish to investigate the impacts of fenpropathrin on fish social behaviors and neural activity. Exposure of adult zebrafish to 500 ppb of fenpropathrin for 72 h increased anxiety levels but decreased physical fitness, as measured by a novel tank diving test and swimming tunnel test. Fish exposed to fenpropathrin appeared to spend more time in the conspecific zone of the tank, possibly seeking greater comfort from their companions. Although learning, memory, and aggressive behavior did not change, fish exposed to fenpropathrin appeared to have shorter fighting durations. The immunocytochemical results showed the tyrosine hydroxylase antibody-labeled dopaminergic neurons in the teleost posterior tuberculum decreased in the zebrafish brain. According to a quantitative polymerase chain reaction (qPCR) analysis of the brain, exposure to fenpropathrin resulted in a decrease in the messenger (m)RNA expression of monoamine oxidase (mao), an enzyme that facilitates the deamination of dopamine. In contrast, the mRNA expression of the sncga gene, which may trigger Parkinson's disease, was found to have increased. There were no changes observed in expressions of genes related to antioxidants and apoptosis between the control and fenpropathrin-exposed groups. We provide evidence to demonstrate the defect of the neurotoxicity of fenpropathrin toward dopaminergic neurons in adult zebrafish.


Assuntos
Piretrinas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Comportamento Animal , Poluentes Químicos da Água/toxicidade , Piretrinas/toxicidade , Locomoção , Comportamento Social , Mamíferos
5.
Artigo em Inglês | MEDLINE | ID: mdl-37442313

RESUMO

Methylmercury can interfere with the normal functioning of the nervous system, causing a variety of behavioral and physiological changes in fish. However, the influence of MeHg on the lateral line sensory and ion-regulatory functions of fish is not clear. Zebrafish embryos were utilized as a model to address this question. After exposure to water-borne MeHg (5, 10, 50, or 100 ppb) for 96 h (4-100 h post-fertilization), the survival rate declined by ca. 50 % at 100 ppb. However, MeHg at sublethal concentrations delayed hatching and decreased heart rates and body length. As to effects on the lateral line sensory system, MeHg at ≥10 ppb decreased the number of hair cells and impaired hair bundles and Ca2+-mediated mechanical transduction. As to ion regulation, MeHg at ≥10 ppb decreased the densities of skin stem cells and ionocytes, leading to declines in ion (Na+, K+, and Ca2+) contents and H+/NH4+ excretion levels. A gene expression analysis also revealed declines in messenger RNA levels of several ion-regulatory genes (ncc2b, trpv6v1a, trpv5/6, ncx1b, and rhcg1). This study demonstrated that the lateral line sensory and ion regulatory functions of fish are extremely sensitive to MeHg.


Assuntos
Sistema da Linha Lateral , Compostos de Metilmercúrio , Animais , Peixe-Zebra/metabolismo , Compostos de Metilmercúrio/toxicidade , Pele
6.
Artigo em Inglês | MEDLINE | ID: mdl-37478959

RESUMO

Environmental pollution by micro- and nanosized plastic particles is a potential threat to aquatic animals. Polystyrene is one of the most common plastic particles in aquatic environments. Previous studies found that polystyrene nanoparticles (PNs) can penetrate the integument and accumulate in the organs of fish embryos. However, the potential impacts of PNs on fish embryos are not fully understood. To investigate this issue, zebrafish embryos were exposed to different concentrations (10, 25, and 50 mg/L) of PNs (25 nm) for 96 h (4-100 h post-fertilization), and various endpoints were examined, including developmental morphology (body length, sizes of the eyes, otic vesicles, otoliths, pericardial cavity, and yolk sac), locomotion (touch-evoked escape response and spinal motor neurons), and lateral-line function (hair cell number and hair bundle number). Exposure to 50 mg/L of PNs resulted in significant adverse effects across all endpoints studied, indicating that embryonic development was severely disrupted, and both locomotion and sensory function were impaired. However, at 25 mg/L of PNs, only locomotion and sensory function were significantly affected. The effects were insignificant in all examined endpoints at 10 mg/L of PNs. Transcript levels of several marker genes for neuronal function and eye development were suppressed after treatment. Exposure to fluorescent PNs showed that they accumulated in various organs including, the eyes, gills, blood vessels, gallbladder, gut, and lateral line neuromasts. Overall, this study suggests that short-term exposure to a high concentration of PNs can threaten fish survival by impairing embryonic development, locomotion performance, and mechanical sensory function.


Assuntos
Sistema da Linha Lateral , Nanopartículas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Sensação , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
7.
Aquat Toxicol ; 260: 106592, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37247576

RESUMO

The widespread use of silver in nanomaterials has led to increases in environmental contamination, which poses a threat to aquatic animals. Euryhaline fish, which live in environments with fluctuating salinity levels, have strong osmotic regulatory abilities to cope with such changes. This study attempted to investigate how silver affects the osmoregulatory capabilities of euryhaline fish, using medaka (Oryzias latipes) embryos as a model. The embryos were exposed to AgNO3 for 7 d in either fresh water (FW) or seawater (SW), and their mortality, heart rate, morphology, and ionocytes were examined. Results showed that the toxicity of AgNO3 was higher in FW than in SW (50% lethal concentrations (LC50) were 0.17 vs. 1.01 ppm). Although AgNO3 (0.05 and 0.1 ppm) did not significantly change the morphology of embryos, it impaired ionocytes and elevated heart rates in FW. While, AgNO3 (0.1 and 0.5 ppm) did not affect the morphology, ionocytes, or heart rate in SW, it impaired the hypo-osmoregulatory capability and elevated the mortality of embryos that were transferred from FW to SW. At 12 h after SW transfer, ionocytes were severely impaired, and water-drinking behavior was suppressed, resulting in body dehydration and sodium overload. In contrast, AgNO3 did not elevate the mortality of embryos that were transferred from SW to FW. To sum up, the presence of silver in FW during the developmental stage of euryhaline fish could potentially endanger their survival during SW adaptation.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Salinidade , Oryzias/fisiologia , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Equilíbrio Hidroeletrolítico , Água do Mar , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Proc Biol Sci ; 290(1990): 20221973, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629118

RESUMO

The shallow-water hydrothermal vent system of Kueishan Island has been described as one of the world's most acidic and sulfide-rich marine habitats. The only recorded metazoan species living in the direct vicinity of the vents is Xenograpsus testudinatus, a brachyuran crab endemic to marine sulfide-rich vent systems. Despite the toxicity of hydrogen sulfide, X. testudinatus occupies an ecological niche in a sulfide-rich habitat, with the underlying detoxification mechanism remaining unknown. Using laboratory and field-based experiments, we characterized the gills of X. testudinatus that are the major site of sulfide detoxification. Here sulfide is oxidized to thiosulfate or bound to hypotaurine to generate the less toxic thiotaurine. Biochemical and molecular analyses demonstrated that the accumulation of thiosulfate and hypotaurine is mediated by the sodium-independent sulfate anion transporter (SLC26A11) and taurine transporter (Taut), which are expressed in gill epithelia. Histological and metagenomic analyses of gill tissues demonstrated a distinct bacterial signature dominated by Epsilonproteobacteria. Our results suggest that thiotaurine synthesized in gills is used by sulfide-oxidizing endo-symbiotic bacteria, creating an effective sulfide-buffering system. This work identified physiological mechanisms involving host-microbe interactions that support life of a metazoan in one of the most extreme environments on our planet.


Assuntos
Braquiúros , Fontes Hidrotermais , Animais , Tiossulfatos , Sulfetos/toxicidade , Braquiúros/fisiologia , Bactérias
9.
Ecotoxicol Environ Saf ; 244: 114058, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108432

RESUMO

Ammonia pollutants were usually found in aquatic environments is due to urban sewage, industrial wastewater discharge, and agricultural runoff and concentrations as high as 180 mg/L (NH4+) have been reported in rivers. High ammonia levels are known to impair multiple tissue and cell functions and cause fish death. Although ammonia is a potent neurotoxin, how sublethal concentrations of ammonia influence the central nervous system (CNS) and the complex behaviors of fish is still unclear. In the present study, we demonstrated that acute sublethal ammonia exposure can change social behavior of adult zebrafish. The exposure to 90 mg /L of (NH4+) for 4 h induced a strong fear response and lower shoaling cohesion; exposure to 180 mg /L of (NH4+) for 4 h reduced the aggressiveness, and social recognition, while the anxiety, social preference, learning, and short-term memory were not affected. Messenger RNA expressions of glutaminase and glutamate dehydrogenase in the brain were induced, suggesting that ammonia exposure altered glutamate neurotransmitters in the CNS. Our findings in zebrafish provided delicate information of ammonia neurotoxicity in complex higher-order social behaviors, which has not been revealed previously. In conclusion, sublethal and acute ammonia exposure can change specific behaviors of fish, which might lead to reductions in individual and population fitness levels.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Amônia/metabolismo , Amônia/toxicidade , Animais , Ansiedade/induzido quimicamente , Cognição , Glutamato Desidrogenase/metabolismo , Glutamatos/metabolismo , Glutaminase/metabolismo , Neurotoxinas/metabolismo , RNA Mensageiro/metabolismo , Esgotos , Comportamento Social , Águas Residuárias , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35697282

RESUMO

Pharmaceuticals and personal care products are emerging environmental pollutants. Cisplatin, one of the most widely used platinum-based chemotherapeutic agents, has been found to contaminate aquatic environments. Using zebrafish embryos as a model, cisplatin was previously found to impair skin ionocytes and ion regulation. The purpose of this study was to further investigate how cisplatin damages ionocytes. Zebrafish embryos were exposed to cisplatin (0, 50, and 100 µM) for 96 h (4-100 h post-fertilization) and then stained with fluorescent dyes to reveal mitochondrial activity (rhodamine123), apoptosis (acridine orange), and oxidative stress (CellROX/MitoSOX) in ionocytes of living embryos. Results showed that cisplatin exposure decreased rhodamine 123-labeled ionocytes, induced oxidative stress in ionocytes, and promoted apoptosis in a concentration-dependent manner. Quantitative PCR analysis showed that mRNA levels of antioxidative genes (sod1, sod2, gpx1a, and cat) and an apoptotic gene (caps3a) were induced. In the time-course experiment at 96-98 h post-fertilization, cisplatin increased oxidative stress and apoptosis in ionocytes in a time-dependent manner. In conclusion, this study demonstrates that cisplatin exposure induces oxidative stress, mitochondrial damage, and apoptosis in ionocytes of zebrafish embryos.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Apoptose/genética , Cisplatino/metabolismo , Cisplatino/toxicidade , Embrião não Mamífero/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
11.
Aquat Toxicol ; 248: 106203, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35617773

RESUMO

The presence of nanoplastics in aquatic environments is a global problem. Accumulating evidence shows that nanoplastics can accumulate in fish and influence internal organs. However, it is still unknown if nanoplastics can impair skin cells (keratinocytes and ionocytes), which play critical roles in maintaining body fluid homeostasis. In the present study, zebrafish embryos were exposed to polystyrene nanoplastics (PS-NPs; 25 nm in size, at 0, 10, 25, and 50 mg/L) for 96 h to test the effects of PS-NPs on skin functions. After exposure to 50 mg/L, the survival rate, ion (Na+, K+, and Ca2+) contents, and acid/ammonia excretion by skin cells of embryos significantly declined. The apical structure of skin keratinocytes was damaged at 10, 25, and 50 mg/L. The number and mitochondrial activity of ionocytes were reduced at 25 and 50 mg/L. Reactive oxygen species (ROS) levels indicated by CellROX staining showed that both ionocytes and keratinocytes were under oxidative stress. PS-NPs reduced the mRNA expression of antioxidant genes (sod1, sod2, cat, and gpx1a), and promoted apoptosis-related genes (casp3a). Taken together, this study suggests that PS-NPs might suppress antioxidative reactions and induce oxidative stress, leading to mitochondrial damage and cell death of ionocytes, eventually impairing skin functions including ion uptake, pH regulation, and ammonia excretion.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Amônia/metabolismo , Amônia/toxicidade , Animais , Microplásticos , Nanopartículas/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
12.
Front Physiol ; 13: 870967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399277

RESUMO

Ionocytes in the skin and gills of seawater (SW) fishes are responsible for acid-base regulation and salt secretion. Na+/H+ exchangers (NHEs) are considered the major acid (H+)-secreting transporters in ionocytes of SW fishes. However, the subcellular localization and function of a specific NHE isoform (NHE2) have never clearly been revealed. In this study, we cloned and sequenced NHE2 from an SW-acclimated medaka (Oryzias latipes) and examined its functions in medaka embryos. A phylogenetic analysis showed that the evolutionary relationships of mammalian NHE2 and NHE4 are close to those of fish NHE2. A gene structure analysis showed that tetrapod NHE4 might be a tandem duplication of fish NHE2. Immunohistochemistry with a medaka-specific antibody localized NHE2 to the basolateral membrane of ionocytes. Lost-of-function experiments with photo-activated morpholino oligonucleotides showed that both H+ and Cl- secretion by ionocytes were suppressed in NHE2-knockdown embryos, suggesting that the basolateral NHE2 facilitates acid and salt secretion by ionocytes of medaka in seawater.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34785368

RESUMO

Silver nanoparticles (AgNPs) are increasingly used in our daily life and have become a potential environmental hazard. However, the toxic effects of AgNPs on the early stages of fish are not fully understood, and little is known about their effects on specific types of ionocytes. Using zebrafish embryos as a model, this study examined the effects (changes in cell number, morphology, NH4+ secretion and gene expression) of sublethal concentrations of AgNPs (0.1, 1, and 3 mg/L) on two major types of ionocytes: H+ pump-rich (HR) ionocytes, and Na+ pump-rich (NaR) ionocytes in the skin of embryos. After exposure to AgNPs for 96 h, the number of HR ionocytes significantly declined by 30% and 41% in the 1 and 3 mg/L AgNP groups, respectively. In addition, the apical opening of HR ionocytes became smaller, suggesting that AgNPs impaired the critical structure for ion transport. NH4+ secretion by HR ionocytes of embryos also declined significantly after AgNP exposure. In contrast, the number of NaR ionocytes increased by 29% and 43% in the 1 and 3 mg/L AgNP groups, respectively, while these cells deformed their shape. AgNPs altered mRNA levels of several ion channel and transporter genes involved in the functions of HR ionocytes and NaR ionocytes, and influenced hormone genes involved in regulating calcium homeostasis. This study shows that AgNPs can cause differential adverse effects on two types of ionocytes and the effects can threaten fish survival.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas Metálicas/química , Mitocôndrias/efeitos dos fármacos , Prata/toxicidade , Animais , Transporte de Íons , Prata/química , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
14.
Aquat Toxicol ; 230: 105703, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249295

RESUMO

Environmental contamination by anticancer pharmaceuticals has been widely reported. These drugs are not readily biodegradable, and their parent compounds and/or metabolites have been detected in surface waters and groundwater throughout the world. Adverse effects of anticancer drugs occur frequently in cancer patients, and a large body of clinical knowledge has accumulated. However, the effects of these drugs on aquatic organisms have not been thoroughly studied. This study aimed to investigate the effects of acute exposure to a common anticancer drug, vincristine (VCR), on zebrafish embryonic development and skin function. After 96 h of VCR exposure (0, 1, 10, 15, and 25 mg/L), significant teratogenic effects were observed, including growth retardation, pericardial edema, spine, tail, and yolk sac malformations (VCR ≥ 15 mg/L), a decreased heart rate, and ocular malformations (VCR ≥ 10 mg/L). The value of the half lethal concentration for zebrafish embryos was 20.6 mg/L. At ≥10 mg/L VCR, systemic ion contents and acid secretion in the skin over the yolk-sac decreased, and these findings were associated with decreases in skin ionocytes (H+-ATPase-rich cells and Na+-K+-ATPase-rich cells). Also, the microridge-structure of skin keratinocytes was significantly damaged. The number of lateral line hair cells was reduced when VCR was ≥10 mg/L, and functional impairment was detected when VCR was as low as 1 mg/L. Results of this in vivo study in zebrafish embryos indicate that acute exposure to VCR can lead to developmental defects, impairment of skin functions, and even fish death.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Sistema da Linha Lateral/efeitos dos fármacos , Pele/efeitos dos fármacos , Vincristina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Pele/metabolismo , Pele/patologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
15.
Chemosphere ; 263: 128364, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297279

RESUMO

Environmental contamination by antibiotics has become a global issue. Colistin, a cationic antimicrobial polypeptide, has been widely used in human/veterinary medicine, and growth promotion in aquaculture. However, no study has been conducted to test the toxic effects of colistin on aquatic animals. In this study, we examined the effects of colistin on zebrafish embryos. Zebrafish embryos were incubated in different concentrations (0, 0.01, 0.1, 1, 2, 3, and 10 µM) of colistin for 96 h. Colistin increased the mortality rate in a dose-dependent manner (LC50 was 3.0 µM or 3.5 mg L-1), but it did not change the hatching rate, heart rate, body length, eye size, or yolk size of embryos. However, colistin impaired keratinocytes and lateral-line hair cells in the skin of embryos. Colistin (at concentrations ≥0.1 µM) decreased the number of FM1-43-labeled hair cells and reduced the mechanotransduction-mediated Ca2+ influx at hair bundles, suggesting that sublethal concentrations of colistin can impair lateral line function. To investigate the lethal injury, morphological changes were sequentially observed in post-hatched embryos subjected to lethal concentrations of colistin. We found that skin keratinocytes were severely damaged and detached after exposure, leading to hypotonic swelling of the yolk sac, loss of ion contents, cell lysis, and eventual death. This study revealed that acute colistin exposure can impair skin cells and pose a threat to fish survival.


Assuntos
Sistema da Linha Lateral , Poluentes Químicos da Água , Animais , Colistina/toxicidade , Embrião não Mamífero , Humanos , Queratinócitos , Mecanotransdução Celular , Peixe-Zebra
16.
J Hazard Mater ; 403: 124031, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265049

RESUMO

Silver and silver nanoparticles are used in several consumer products, particularly sterilizing agents. Ag+ released from the particles causes physiological damages of aquatic organisms. However, the effects of silver on neural and behavioral functions of fish remain unclear. Here, we used zebrafish as a model to investigate the impacts of silver on social, learning and memory behaviors in teleost. Adult zebrafish showed mortality rates of 12.875% and 100% on 72 h exposure to 30 and ≥ 50 ppb of silver nitrate, respectively. Silver accumulation in the brain increased on exposure to 10 and 30 ppb of AgNO3. The physical fitness of the zebrafish, measured by novel tank diving test and swimming performance, decreased after 72 h incubation in 30 ppb of AgNO3. Exposure to 10 ppb of AgNO3 impaired social preference, social recognition, learning, and memory, but did not affect anxiety level, aggressiveness, and shoaling behavior. In situ hybridization of c-fos mRNA showed that AgNO3 treatment decreased neural activity in the brain areas crucial for learning, memory, and social behaviors, including the medial and dorsal zones of the dorsal telencephalic area. In conclusion, 72 h exposure to AgNO3 in a sublethal level impaired learning and social behaviors, indicating neurotoxicity in adult zebrafish.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Animais , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Nitrato de Prata , Comportamento Social
17.
Chemosphere ; 261: 128051, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113650

RESUMO

The potential toxicity of copper nanoparticles (CuNPs) to early stages of fishes is not fully understood, and little is known about their effects on ionocytes and associated functions. This study used zebrafish embryos as a model to investigate the toxic effects of CuNPs on two subtypes of ionocytes. Zebrafish embryos were exposed to 0.1, 1, and 3 mg L-1 CuNPs for 96 h. After exposure, whole-body Na+ and Ca2+ contents were significantly reduced at ≥0.1 mg L-1, while the K+ content had decreased at ≥1 mg L-1. H+ and NH4+ excretion by the skin significantly decreased at ≥1 mg L-1. The number of living ionocytes labeled with rhodamine-123 had significantly decreased with ≥0.1 mg L-1 CuNPs. The ionocyte subtypes of H+-ATPase-rich (HR) and Na+/K+-ATPase-rich (NaR) cells were labeled by immunostaining and had decreased with ≥1 mg L-1. Shrinkage of the apical opening of ionocytes was revealed by scanning electronic microscopy. Functional impairment was also reflected by changes in gene expressions, including ion transporters/channels and Ca2+-regulatory hormones. This study shows that CuNP exposure can impair two subtypes of ionocytes and their associated functions, including Na+/Ca2+ uptake and H+/NH4+ excretion in zebrafish embryos.


Assuntos
Amônia/metabolismo , Cobre/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Ácidos/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Cobre/metabolismo , Embrião não Mamífero/metabolismo , Canais Iônicos/metabolismo , Íons/metabolismo , Nanopartículas/metabolismo , Pele/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Peixe-Zebra/metabolismo
18.
Carbohydr Polym ; 240: 116164, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32475540

RESUMO

Chitosan is suggested as no or low toxicity and biocompatible biomaterial. Digestion of chitosan to reduce molecular weight and formulate nanoparticle was generally used to improve efficiency for DNA or protein delivery. However, the toxicity of low-molecular-weight chitosan (LMWCS) towards freshwater fishes has not been well evaluated. Here, we reported the toxic mechanism of LMWCS using zebrafish (Danio rerio) liver (ZFL) cell line, zebrafish larvae, and adult fish. LMWCS rapidly induced cytotoxicity of ZFL cells and death of zebrafish. Cell membrane damaged by LMWCS reduced cell viability. Damaged membrane of epithelial cell in zebrafish larvae induced breakage of the yolk. Adult fish exhibited hypoxia before death due to multiple damages induced by LMWCS. Although the toxicity of LMWCS was revealed in zebrafish model, the toxicity was only present in pH < 7 and easy be neutralized by other negative ions. Collectively, these data improved a new understanding of LMWCS properties.


Assuntos
Materiais Biocompatíveis/toxicidade , Quitosana/toxicidade , Larva/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Peso Molecular , Testes de Toxicidade
19.
Chemosphere ; 257: 127170, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32497837

RESUMO

Ammonia (including NH3 and NH4+) is a major pollutant of freshwater environments. However, the toxic effects of ammonia on the early stages of fish are not fully understood, and little is known about the effects on the sensory system. In this study, we hypothesized that ammonia exposure can cause adverse effects on embryonic development and impair the lateral line system of fish. Zebrafish embryos were exposed to high-ammonia water (10, 15, 20, 25, and 30 mM NH4Cl; pH 7.0) for 96 h (0-96 h post-fertilization). The body length, heart rate, and otic vesicle size had significantly decreased with ≥15 mM NH4Cl, while the number and function of lateral-line hair cells had decreased with ≥10 mM NH4Cl. The mechanoelectrical transduction (MET) channel-mediated Ca2+ influx was measured with a scanning ion-selective microelectrode technique to reveal the function of hair cells. We found that NH4+ (≥5 mM NH4Cl) entered hair cells and suppressed the Ca2+ influx of hair cells. Neomycin and La3+ (MET channel blockers) suppressed NH4+ influx, suggesting that NH4+ enters hair cells via MET channels in hair bundles. In conclusion, this study showed that ammonia exposure (≥10 mM NH4Cl) can cause adverse effects in zebrafish embryos, and lateral-line hair cells are sensitive to ammonia exposure.


Assuntos
Amônia/metabolismo , Sistema da Linha Lateral/efeitos dos fármacos , Amônia/toxicidade , Animais , Desenvolvimento Embrionário , Células Ciliadas Auditivas/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
20.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R751-R759, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32083965

RESUMO

Isotocin controls ion regulation through modulating the functions of ionocytes (also called mitochondria-rich cells or chloride cells). However, little is known about the upstream molecule of the isotocin system. Herein, we identify transient receptor potential vanilloid 4 (TRPV4), which regulates the mRNA and protein expressions of isotocin and affects ion regulation through the isotocin pathway. Double immunohistochemical results showed that TRPV4 is expressed in isotocinergic neurons in the hypothalamus of the adult zebrafish brain. To further elucidate the roles of TRPV4, we manipulated TRPV4 protein expression and evaluated its ionoregulatory functions in zebrafish embryos. TRPV4 gene knockdown with morpholino oligonucleotides decreased ionic contents (Na+, Cl-, and Ca2+) of whole larvae and the H+-secreting function of larval skin of zebrafish. mRNA expressions of ionocyte-related transporters, including H+-ATPase, the epithelial Ca2+ channel, and the Na+-Cl- cotransporter, were also suppressed in trpv4 morphants. Numbers of ionocytes (H+-ATPase-rich cells and Na+-K+-ATPase-rich cells) and epidermal stem cells in zebrafish larval skin also decreased after trpv4 knockdown. Our results showed that TRPV4 modulates ion balance through the isotocin pathway.


Assuntos
Ocitocina/análogos & derivados , Canais de Cátion TRPV/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Cloretos/metabolismo , Regulação da Expressão Gênica/fisiologia , Transporte de Íons , Larva , Neurônios , Ocitocina/genética , Ocitocina/metabolismo , Sódio/metabolismo , Canais de Cátion TRPV/genética , Equilíbrio Hidroeletrolítico , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...